
smmap Documentation
Release 0.8.0

Sebastian Thiel

November 19, 2014

Contents

1 Motivation 3

2 Overview 5

3 Prerequisites 7

4 Limitations 9

5 Installing smmap 11

6 Homepage and Links 13

7 License Information 15

8 Usage Guide 17
8.1 Design . 17
8.2 Memory Managers . 17
8.3 Buffers . 18

9 API Reference 21
9.1 Mapped Memory Managers . 21
9.2 Buffers . 24
9.3 Exceptions . 24
9.4 Utilities . 25

10 Changelog 27
10.1 v0.8.3 . 27
10.2 v0.8.1 . 27
10.3 v0.8.0 . 27

11 Indices and tables 29

Python Module Index 31

i

ii

smmap Documentation, Release 0.8.0

smmap is a pure python implementation of a sliding memory map to help unifying memory mapped access on 32 and
64 bit systems and to help managing resources more efficiently.

Contents:

Contents 1

smmap Documentation, Release 0.8.0

2 Contents

CHAPTER 1

Motivation

When reading from many possibly large files in a fashion similar to random access, it is usually the fastest and most
efficient to use memory maps.

Although memory maps have many advantages, they represent a very limited system resource as every map uses one
file descriptor, whose amount is limited per process. On 32 bit systems, the amount of memory you can have mapped
at a time is naturally limited to theoretical 4GB of memory, which may not be enough for some applications.

3

smmap Documentation, Release 0.8.0

4 Chapter 1. Motivation

CHAPTER 2

Overview

Smmap wraps an interface around mmap and tracks the mapped files as well as the amount of clients who use it. If
the system runs out of resources, or if a memory limit is reached, it will automatically unload unused maps to allow
continued operation.

To allow processing large files even on 32 bit systems, it allows only portions of the file to be mapped. Once the user
reads beyond the mapped region, smmap will automatically map the next required region, unloading unused regions
using a LRU algorithm.

The interface also works around the missing offset parameter in python implementations up to python 2.5.

Although the library can be used most efficiently with its native interface, a Buffer implementation is provided to hide
these details behind a simple string-like interface.

For performance critical 64 bit applications, a simplified version of memory mapping is provided which always maps
the whole file, but still provides the benefit of unloading unused mappings on demand.

5

smmap Documentation, Release 0.8.0

6 Chapter 2. Overview

CHAPTER 3

Prerequisites

• Python 2.4, 2.5, 2.6, 2.7 or 3.3

• OSX, Windows or Linux

The package was tested on all of the previously mentioned configurations.

7

smmap Documentation, Release 0.8.0

8 Chapter 3. Prerequisites

CHAPTER 4

Limitations

• The memory access is read-only by design.

• In python below 2.6, memory maps will be created in compatibility mode which works, but creates inefficient
memory mappings as they always start at offset 0.

9

smmap Documentation, Release 0.8.0

10 Chapter 4. Limitations

CHAPTER 5

Installing smmap

Its easiest to install smmap using the pip program:

$ pip install smmap

As the command will install smmap in your respective python distribution, you will most likely need root permissions
to authorize the required changes.

If you have downloaded the source archive, the package can be installed by running the setup.py script:

$ python setup.py install

It is advised to have a look at the Usage Guide for a brief introduction on the different database implementations.

11

smmap Documentation, Release 0.8.0

12 Chapter 5. Installing smmap

CHAPTER 6

Homepage and Links

The project is home on github at https://github.com/Byron/smmap.

The latest source can be cloned from github as well:

• git://github.com/gitpython-developers/smmap.git

For support, please use the git-python mailing list:

• http://groups.google.com/group/git-python

Issues can be filed on github:

• https://github.com/Byron/smmap/issues

13

https://github.com/Byron/smmap
http://groups.google.com/group/git-python
https://github.com/Byron/smmap/issues

smmap Documentation, Release 0.8.0

14 Chapter 6. Homepage and Links

CHAPTER 7

License Information

smmap is licensed under the New BSD License.

15

smmap Documentation, Release 0.8.0

16 Chapter 7. License Information

CHAPTER 8

Usage Guide

This text briefly introduces you to the basic design decisions and accompanying classes.

8.1 Design

Per application, there is MemoryManager which is held as static instance and used throughout the application. It can
be configured to keep your resources within certain limits.

To access mapped regions, you require a cursor. Cursors point to exactly one file and serve as handles into it. As long
as it exists, the respective memory region will remain available.

For convenience, a buffer implementation is provided which handles cursors and resource allocation behind its simple
buffer like interface.

8.2 Memory Managers

There are two types of memory managers, one uses static windows, the other one uses sliding windows. A window is
a region of a file mapped into memory. Although the names might be somewhat misleading as technically windows
are always static, the sliding version will allocate relatively small windows whereas the static version will always map
the whole file.

The static manager does nothing more than keeping a client count on the respective memory maps which always
map the whole file, which allows to make some assumptions that can lead to simplified data access and increased
performance, but reduces the compatibility to 32 bit systems or giant files.

The sliding memory manager therefore should be the default manager when preparing an application for handling
huge amounts of data on 32 bit and 64 bit platforms:

import smmap
This instance should be globally available in your application
It is configured to be well suitable for 32-bit or 64 bit applications.
mman = smmap.SlidingWindowMapManager()

the manager provides much useful information about its current state
like the amount of open file handles or the amount of mapped memory
mman.num_file_handles()
mman.mapped_memory_size()
and many more ...

17

smmap Documentation, Release 0.8.0

8.2.1 Cursors

Cursors are handles that point onto a window, i.e. a region of a file mapped into memory. From them you may obtain
a buffer through which the data of that window can actually be accessed:

import smmap.test.lib
fc = smmap.test.lib.FileCreator(1024*1024*8, "test_file")

obtain a cursor to access some file.
c = mman.make_cursor(fc.path)

the cursor is now associated with the file, but not yet usable
assert c.is_associated()
assert not c.is_valid()

before you can use the cursor, you have to specify a window you want to
access. The following just says you want as much data as possible starting
from offset 0.
To be sure your region could be mapped, query for validity
assert c.use_region().is_valid() # use_region returns self

once a region was mapped, you must query its dimension regularly
to assure you don’t try to access its buffer out of its bounds
assert c.size()
c.buffer()[0] # first byte
c.buffer()[1:10] # first 9 bytes
c.buffer()[c.size()-1] # last byte

its recommended not to create big slices when feeding the buffer
into consumers (e.g. struct or zlib).
Instead, either give the buffer directly, or use pythons buffer command.
buffer(c.buffer(), 1, 9) # first 9 bytes without copying them

you can query absolute offsets, and check whether an offset is included
in the cursor’s data.
assert c.ofs_begin() < c.ofs_end()
assert c.includes_ofs(100)

If you are over out of bounds with one of your region requests, the
cursor will be come invalid. It cannot be used in that state
assert not c.use_region(fc.size, 100).is_valid()
map as much as possible after skipping the first 100 bytes
assert c.use_region(100).is_valid()

You can explicitly free cursor resources by unusing the cursor’s region
c.unuse_region()
assert not c.is_valid()

Now you would have to write your algorithms around this interface to properly slide through huge amounts of data.

Alternatively you can use a convenience interface.

8.3 Buffers

To make first use easier, at the expense of performance, there is a Buffer implementation which uses a cursor under-
neath.

18 Chapter 8. Usage Guide

smmap Documentation, Release 0.8.0

With it, you can access all data in a possibly huge file without having to take care of setting the cursor to different
regions yourself:

Create a default buffer which can operate on the whole file
buf = smmap.SlidingWindowMapBuffer(mman.make_cursor(fc.path))

you can use it right away
assert buf.cursor().is_valid()

buf[0] # access the first byte
buf[-1] # access the last ten bytes on the file
buf[-10:]# access the last ten bytes

If you want to keep the instance between different accesses, use the
dedicated methods
buf.end_access()
assert not buf.cursor().is_valid() # you cannot use the buffer anymore
assert buf.begin_access(offset=10) # start using the buffer at an offset

it will stop using resources automatically once it goes out of scope

8.3.1 Disadvantages

Buffers cannot be used in place of strings or maps, hence you have to slice them to have valid input for the sorts of
struct and zlib. A slice means a lot of data handling overhead which makes buffers slower compared to using cursors
directly.

8.3. Buffers 19

smmap Documentation, Release 0.8.0

20 Chapter 8. Usage Guide

CHAPTER 9

API Reference

9.1 Mapped Memory Managers

Module containing a memory memory manager which provides a sliding window on a number of memory mapped
files

class smmap.mman.StaticWindowMapManager(window_size=0, max_memory_size=0,
max_open_handles=9223372036854775807)

Provides a manager which will produce single size cursors that are allowed to always map the whole file.

Clients must be written to specifically know that they are accessing their data through a StaticWindowMapMan-
ager, as they otherwise have to deal with their window size.

These clients would have to use a SlidingWindowMapBuffer to hide this fact.

This type will always use a maximum window size, and optimize certain methods to accommodate this fact

MapRegionCls
alias of MapRegion

MapRegionListCls
alias of MapRegionList

MapWindowCls
alias of MapWindow

WindowCursorCls
alias of WindowCursor

collect()
Collect all available free-to-collect mapped regions :return: Amount of freed handles

force_map_handle_removal_win(base_path)
ONLY AVAILABLE ON WINDOWS On windows removing files is not allowed if anybody still has it
opened. If this process is ourselves, and if the whole process uses this memory manager (as far as the
parent framework is concerned) we can enforce closing all memory maps whose path matches the given
base path to allow the respective operation after all. The respective system must NOT access the closed
memory regions anymore ! This really may only be used if you know that the items which keep the cursors
alive will not be using it anymore. They need to be recreated ! :return: Amount of closed handles

Note: does nothing on non-windows platforms

make_cursor(path_or_fd)

Returns a cursor pointing to the given path or file descriptor. It can be used to map new regions
of the file into memory

21

smmap Documentation, Release 0.8.0

Note: if a file descriptor is given, it is assumed to be open and valid, but may be closed afterwards. To
refer to the same file, you may reuse your existing file descriptor, but keep in mind that new windows can
only be mapped as long as it stays valid. This is why the using actual file paths are preferred unless you
plan to keep the file descriptor open.

Note: file descriptors are problematic as they are not necessarily unique, as two different files opened and
closed in succession might have the same file descriptor id.

Note: Using file descriptors directly is faster once new windows are mapped as it prevents the file to be
opened again just for the purpose of mapping it.

mapped_memory_size()

Returns amount of bytes currently mapped in total

max_file_handles()

Returns maximium amount of handles we may have opened

max_mapped_memory_size()

Returns maximum amount of memory we may allocate

num_file_handles()

Returns amount of file handles in use. Each mapped region uses one file handle

num_open_files()
Amount of opened files in the system

window_size()

Returns size of each window when allocating new regions

class smmap.mman.SlidingWindowMapManager(window_size=-1, max_memory_size=0,
max_open_handles=9223372036854775807)

Maintains a list of ranges of mapped memory regions in one or more files and allows to easily obtain additional
regions assuring there is no overlap. Once a certain memory limit is reached globally, or if there cannot be
more open file handles which result from each mmap call, the least recently used, and currently unused mapped
regions are unloaded automatically.

Note: currently not thread-safe !

Note: in the current implementation, we will automatically unload windows if we either cannot create
more memory maps (as the open file handles limit is hit) or if we have allocated more than a safe amount
of memory already, which would possibly cause memory allocations to fail as our address space is full.

class smmap.mman.WindowCursor(manager=None, regions=None)
Pointer into the mapped region of the memory manager, keeping the map alive until it is destroyed and no other
client uses it.

Cursors should not be created manually, but are instead returned by the SlidingWindowMapManager

Note:: The current implementation is suited for static and sliding window managers, but it also means that it
must be suited for the somewhat quite different sliding manager. It could be improved, but I see no real need to
do so.

assign(rhs)
Assign rhs to this instance. This is required in order to get a real copy. Alternativly, you can copy an
existing instance using the copy module

buffer()
Return a buffer object which allows access to our memory region from our offset to the window size.
Please note that it might be smaller than you requested when calling use_region()

22 Chapter 9. API Reference

smmap Documentation, Release 0.8.0

Note: You can only obtain a buffer if this instance is_valid() !

Note: buffers should not be cached passed the duration of your access as it will prevent resources from
being freed even though they might not be accounted for anymore !

fd()

Returns file descriptor used to create the underlying mapping.

Note: it is not required to be valid anymore :raise ValueError: if the mapping was not created by a file
descriptor

file_size()

Returns size of the underlying file

includes_ofs(ofs)

Returns True if the given absolute offset is contained in the cursors current region

Note: cursor must be valid for this to work

is_associated()

Returns True if we are associated with a specific file already

is_valid()

Returns True if we have a valid and usable region

map()

Returns the underlying raw memory map. Please not that the offset and size is likely to be
different to what you set as offset and size. Use it only if you are sure about the region it
maps, which is the whole file in case of StaticWindowMapManager

ofs_begin()

Returns offset to the first byte pointed to by our cursor

Note: only if is_valid() is True

ofs_end()

Returns offset to one past the last available byte

path()

Returns path of the underlying mapped file

Raises ValueError if attached path is not a path

path_or_fd()

Returns path or file descriptor of the underlying mapped file

region_ref()

Returns weak ref to our mapped region.

Raises AssertionError if we have no current region. This is only useful for debugging

size()

Returns amount of bytes we point to

unuse_region()
Unuse the ucrrent region. Does nothing if we have no current region

9.1. Mapped Memory Managers 23

smmap Documentation, Release 0.8.0

Note: the cursor unuses the region automatically upon destruction. It is recommended to un-use the region
once you are done reading from it in persistent cursors as it helps to free up resource more quickly

use_region(offset=0, size=0, flags=0)
Assure we point to a window which allows access to the given offset into the file

Parameters

• offset – absolute offset in bytes into the file

• size – amount of bytes to map. If 0, all available bytes will be mapped

• flags – additional flags to be given to os.open in case a file handle is initially opened for
mapping. Has no effect if a region can actually be reused.

Returns this instance - it should be queried for whether it points to a valid memory region. This
is not the case if the mapping failed because we reached the end of the file

Note:: The size actually mapped may be smaller than the given size. If that is the case, either the file has
reached its end, or the map was created between two existing regions

9.2 Buffers

Module with a simple buffer implementation using the memory manager

class smmap.buf.SlidingWindowMapBuffer(cursor=None, offset=0, size=9223372036854775807,
flags=0)

A buffer like object which allows direct byte-wise object and slicing into memory of a mapped file. The mapping
is controlled by the provided cursor.

The buffer is relative, that is if you map an offset, index 0 will map to the first byte at the offset you used during
initialization or begin_access

Note: Although this type effectively hides the fact that there are mapped windows underneath, it can unfortu-
nately not be used in any non-pure python method which needs a buffer or string

begin_access(cursor=None, offset=0, size=9223372036854775807, flags=0)
Call this before the first use of this instance. The method was already called by the constructor in case
sufficient information was provided.

For more information no the parameters, see the __init__ method :param path: if cursor is None the
existing one will be used. :return: True if the buffer can be used

cursor()

Returns the currently set cursor which provides access to the data

end_access()
Call this method once you are done using the instance. It is automatically called on destruction, and should
be called just in time to allow system resources to be freed.

Once you called end_access, you must call begin access before reusing this instance!

9.3 Exceptions

Module with system exceptions

exception smmap.exc.MemoryManagerError
Base class for all exceptions thrown by the memory manager

24 Chapter 9. API Reference

smmap Documentation, Release 0.8.0

exception smmap.exc.RegionCollectionError
Thrown if a memory region could not be collected, or if no region for collection was found

9.4 Utilities

Module containing a memory memory manager which provides a sliding window on a number of memory mapped
files

smmap.util.align_to_mmap(num, round_up)
Align the given integer number to the closest page offset, which usually is 4096 bytes.

Parameters round_up – if True, the next higher multiple of page size is used, otherwise the lower
page_size will be used (i.e. if True, 1 becomes 4096, otherwise it becomes 0)

Returns num rounded to closest page

smmap.util.is_64_bit()

Returns True if the system is 64 bit. Otherwise it can be assumed to be 32 bit

class smmap.util.buffer
buffer(object [, offset[, size]])

Create a new buffer object which references the given object. The buffer will reference a slice of the target
object from the start of the object (or at the specified offset). The slice will extend to the end of the target object
(or with the specified size).

class smmap.util.MapWindow(offset, size)
Utility type which is used to snap windows towards each other, and to adjust their size

align()
Assures the previous window area is contained in the new one

extend_left_to(window, max_size)
Adjust the offset to start where the given window on our left ends if possible, but don’t make yourself
larger than max_size. The resize will assure that the new window still contains the old window area

extend_right_to(window, max_size)
Adjust the size to make our window end where the right window begins, but don’t get larger than max_size

classmethod from_region(region)

Returns new window from a region

ofs

ofs_end()

size

class smmap.util.MapRegion(path_or_fd, ofs, size, flags=0)
Defines a mapped region of memory, aligned to pagesizes

Note: deallocates used region automatically on destruction

buffer()

Returns a buffer containing the memory

client_count()

Returns number of clients currently using this region

includes_ofs(ofs)

9.4. Utilities 25

smmap Documentation, Release 0.8.0

Returns True if the given offset can be read in our mapped region

increment_usage_count()
Adjust the usage count by the given positive or negative offset

map()

Returns a memory map containing the memory

ofs_begin()

Returns absolute byte offset to the first byte of the mapping

ofs_end()

Returns Absolute offset to one byte beyond the mapping into the file

size()

Returns total size of the mapped region in bytes

usage_count()

Returns amount of usages so far

class smmap.util.MapRegionList(path_or_fd)
List of MapRegion instances associating a path with a list of regions.

client_count()

Returns amount of clients which hold a reference to this instance

file_size()

Returns size of file we manager

path_or_fd()

Returns path or file descriptor we are attached to

26 Chapter 9. API Reference

CHAPTER 10

Changelog

10.1 v0.8.3

• Cleaned up code and assured it works sufficiently well with python 3

10.2 v0.8.1

• A single bugfix

10.3 v0.8.0

• Initial Release

27

smmap Documentation, Release 0.8.0

28 Chapter 10. Changelog

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

29

smmap Documentation, Release 0.8.0

30 Chapter 11. Indices and tables

Python Module Index

s
smmap.buf, 24
smmap.exc, 24
smmap.mman, 21
smmap.util, 25

31

smmap Documentation, Release 0.8.0

32 Python Module Index

Index

A
align() (smmap.util.MapWindow method), 25
align_to_mmap() (in module smmap.util), 25
assign() (smmap.mman.WindowCursor method), 22

B
begin_access() (smmap.buf.SlidingWindowMapBuffer

method), 24
buffer (class in smmap.util), 25
buffer() (smmap.mman.WindowCursor method), 22
buffer() (smmap.util.MapRegion method), 25

C
client_count() (smmap.util.MapRegion method), 25
client_count() (smmap.util.MapRegionList method), 26
collect() (smmap.mman.StaticWindowMapManager

method), 21
cursor() (smmap.buf.SlidingWindowMapBuffer method),

24

E
end_access() (smmap.buf.SlidingWindowMapBuffer

method), 24
extend_left_to() (smmap.util.MapWindow method), 25
extend_right_to() (smmap.util.MapWindow method), 25

F
fd() (smmap.mman.WindowCursor method), 23
file_size() (smmap.mman.WindowCursor method), 23
file_size() (smmap.util.MapRegionList method), 26
force_map_handle_removal_win()

(smmap.mman.StaticWindowMapManager
method), 21

from_region() (smmap.util.MapWindow class method),
25

I
includes_ofs() (smmap.mman.WindowCursor method),

23
includes_ofs() (smmap.util.MapRegion method), 25

increment_usage_count() (smmap.util.MapRegion
method), 26

is_64_bit() (in module smmap.util), 25
is_associated() (smmap.mman.WindowCursor method),

23
is_valid() (smmap.mman.WindowCursor method), 23

M
make_cursor() (smmap.mman.StaticWindowMapManager

method), 21
map() (smmap.mman.WindowCursor method), 23
map() (smmap.util.MapRegion method), 26
mapped_memory_size() (smmap.mman.StaticWindowMapManager

method), 22
MapRegion (class in smmap.util), 25
MapRegionCls (smmap.mman.StaticWindowMapManager

attribute), 21
MapRegionList (class in smmap.util), 26
MapRegionListCls (smmap.mman.StaticWindowMapManager

attribute), 21
MapWindow (class in smmap.util), 25
MapWindowCls (smmap.mman.StaticWindowMapManager

attribute), 21
max_file_handles() (smmap.mman.StaticWindowMapManager

method), 22
max_mapped_memory_size()

(smmap.mman.StaticWindowMapManager
method), 22

MemoryManagerError, 24

N
num_file_handles() (smmap.mman.StaticWindowMapManager

method), 22
num_open_files() (smmap.mman.StaticWindowMapManager

method), 22

O
ofs (smmap.util.MapWindow attribute), 25
ofs_begin() (smmap.mman.WindowCursor method), 23
ofs_begin() (smmap.util.MapRegion method), 26

33

smmap Documentation, Release 0.8.0

ofs_end() (smmap.mman.WindowCursor method), 23
ofs_end() (smmap.util.MapRegion method), 26
ofs_end() (smmap.util.MapWindow method), 25

P
path() (smmap.mman.WindowCursor method), 23
path_or_fd() (smmap.mman.WindowCursor method), 23
path_or_fd() (smmap.util.MapRegionList method), 26

R
region_ref() (smmap.mman.WindowCursor method), 23
RegionCollectionError, 24

S
size (smmap.util.MapWindow attribute), 25
size() (smmap.mman.WindowCursor method), 23
size() (smmap.util.MapRegion method), 26
SlidingWindowMapBuffer (class in smmap.buf), 24
SlidingWindowMapManager (class in smmap.mman), 22
smmap.buf (module), 24
smmap.exc (module), 24
smmap.mman (module), 21
smmap.util (module), 25
StaticWindowMapManager (class in smmap.mman), 21

U
unuse_region() (smmap.mman.WindowCursor method),

23
usage_count() (smmap.util.MapRegion method), 26
use_region() (smmap.mman.WindowCursor method), 24

W
window_size() (smmap.mman.StaticWindowMapManager

method), 22
WindowCursor (class in smmap.mman), 22
WindowCursorCls (smmap.mman.StaticWindowMapManager

attribute), 21

34 Index

	Motivation
	Overview
	Prerequisites
	Limitations
	Installing smmap
	Homepage and Links
	License Information
	Usage Guide
	Design
	Memory Managers
	Buffers

	API Reference
	Mapped Memory Managers
	Buffers
	Exceptions
	Utilities

	Changelog
	v0.8.3
	v0.8.1
	v0.8.0

	Indices and tables
	Python Module Index

