

Welcome to smmap’s documentation!

smmap is a pure python implementation of a sliding memory map to help unifying memory mapped access on 32 and 64 bit systems and to help managing resources more efficiently.

Contents:

	Motivation

	Overview

	Prerequisites

	Limitations

	Installing smmap

	Homepage and Links

	License Information

	Usage Guide
	Design

	Memory Managers

	Buffers

	API Reference
	Mapped Memory Managers

	Buffers

	Utilities

	Changelog
	v6.0.0

	v5.0.0

	v4.0.0

	v3.0.5

	v3.0.4

	v3.0.2

	v3.0.1

	v0.9.0

	v0.8.5

	v0.8.4

	v0.8.3

	v0.8.1

	v0.8.0

Indices and tables

	Index

	Module Index

	Search Page

Motivation

When reading from many possibly large files in a fashion similar to random access, it is usually the fastest and most efficient to use memory maps.

Although memory maps have many advantages, they represent a very limited system resource as every map uses one file descriptor, whose amount is limited per process. On 32 bit systems, the amount of memory you can have mapped at a time is naturally limited to theoretical 4GB of memory, which may not be enough for some applications.

Overview

Smmap wraps an interface around mmap and tracks the mapped files as well as the amount of clients who use it. If the system runs out of resources, or if a memory limit is reached, it will automatically unload unused maps to allow continued operation.

To allow processing large files even on 32 bit systems, it allows only portions of the file to be mapped. Once the user reads beyond the mapped region, smmap will automatically map the next required region, unloading unused regions using a LRU algorithm.

Although the library can be used most efficiently with its native interface, a Buffer implementation is provided to hide these details behind a simple string-like interface.

For performance critical 64 bit applications, a simplified version of memory mapping is provided which always maps the whole file, but still provides the benefit of unloading unused mappings on demand.

Prerequisites

	Python 3.8+

	OSX, Windows or Linux

The package was tested on all of the previously mentioned configurations.

Limitations

	The memory access is read-only by design.

Installing smmap

Its easiest to install smmap using the pip program:

$ pip install smmap

As the command will install smmap in your respective python distribution, you will most likely need root permissions to authorize the required changes.

If you have downloaded the source archive, the package can be installed by running the setup.py script:

$ python setup.py install

It is advised to have a look at the Usage Guide for a brief introduction on the different database implementations.

Homepage and Links

The project is home on github at https://github.com/gitpython-developers/smmap.

The latest source can be cloned from github as well:

	git://github.com/gitpython-developers/smmap.git

For support, please use the git-python mailing list:

	http://groups.google.com/group/git-python

Issues can be filed on github:

	https://github.com/gitpython-developers/smmap/issues

License Information

smmap is licensed under the New BSD License.

Usage Guide

This text briefly introduces you to the basic design decisions and accompanying classes.

Design

Per application, there is MemoryManager which is held as static instance and used throughout the application. It can be configured to keep your resources within certain limits.

To access mapped regions, you require a cursor. Cursors point to exactly one file and serve as handles into it. As long as it exists, the respective memory region will remain available.

For convenience, a buffer implementation is provided which handles cursors and resource allocation behind its simple buffer like interface.

Memory Managers

There are two types of memory managers, one uses static windows, the other one uses sliding windows. A window is a region of a file mapped into memory. Although the names might be somewhat misleading as technically windows are always static, the sliding version will allocate relatively small windows whereas the static version will always map the whole file.

The static manager does nothing more than keeping a client count on the respective memory maps which always map the whole file, which allows to make some assumptions that can lead to simplified data access and increased performance, but reduces the compatibility to 32 bit systems or giant files.

The sliding memory manager therefore should be the default manager when preparing an application for handling huge amounts of data on 32 bit and 64 bit platforms:

import smmap
This instance should be globally available in your application
It is configured to be well suitable for 32-bit or 64 bit applications.
mman = smmap.SlidingWindowMapManager()

the manager provides much useful information about its current state
like the amount of open file handles or the amount of mapped memory
mman.num_file_handles()
mman.mapped_memory_size()
and many more ...

Cursors

Cursors are handles that point onto a window, i.e. a region of a file mapped into memory. From them you may obtain a buffer through which the data of that window can actually be accessed:

import smmap.test.lib
fc = smmap.test.lib.FileCreator(1024*1024*8, "test_file")

obtain a cursor to access some file.
c = mman.make_cursor(fc.path)

the cursor is now associated with the file, but not yet usable
assert c.is_associated()
assert not c.is_valid()

before you can use the cursor, you have to specify a window you want to
access. The following just says you want as much data as possible starting
from offset 0.
To be sure your region could be mapped, query for validity
assert c.use_region().is_valid() # use_region returns self

once a region was mapped, you must query its dimension regularly
to assure you don't try to access its buffer out of its bounds
assert c.size()
c.buffer()[0] # first byte
c.buffer()[1:10] # first 9 bytes
c.buffer()[c.size()-1] # last byte

its recommended not to create big slices when feeding the buffer
into consumers (e.g. struct or zlib).
Instead, either give the buffer directly, or use pythons buffer command.
buffer(c.buffer(), 1, 9) # first 9 bytes without copying them

you can query absolute offsets, and check whether an offset is included
in the cursor's data.
assert c.ofs_begin() < c.ofs_end()
assert c.includes_ofs(100)

If you are over out of bounds with one of your region requests, the
cursor will be come invalid. It cannot be used in that state
assert not c.use_region(fc.size, 100).is_valid()
map as much as possible after skipping the first 100 bytes
assert c.use_region(100).is_valid()

You can explicitly free cursor resources by unusing the cursor's region
c.unuse_region()
assert not c.is_valid()

Now you would have to write your algorithms around this interface to properly slide through huge amounts of data.

Alternatively you can use a convenience interface.

Buffers

To make first use easier, at the expense of performance, there is a Buffer implementation which uses a cursor underneath.

With it, you can access all data in a possibly huge file without having to take care of setting the cursor to different regions yourself:

Create a default buffer which can operate on the whole file
buf = smmap.SlidingWindowMapBuffer(mman.make_cursor(fc.path))

you can use it right away
assert buf.cursor().is_valid()

buf[0] # access the first byte
buf[-1] # access the last ten bytes on the file
buf[-10:]# access the last ten bytes

If you want to keep the instance between different accesses, use the
dedicated methods
buf.end_access()
assert not buf.cursor().is_valid() # you cannot use the buffer anymore
assert buf.begin_access(offset=10) # start using the buffer at an offset

it will stop using resources automatically once it goes out of scope

Disadvantages

Buffers cannot be used in place of strings or maps, hence you have to slice them to have valid input for the sorts of struct and zlib. A slice means a lot of data handling overhead which makes buffers slower compared to using cursors directly.

API Reference

Mapped Memory Managers

Module containing a memory memory manager which provides a sliding window on a number of memory mapped files

	
class smmap.mman.StaticWindowMapManager(window_size=0, max_memory_size=0, max_open_handles=9223372036854775807)

	Provides a manager which will produce single size cursors that are allowed
to always map the whole file.

Clients must be written to specifically know that they are accessing their data
through a StaticWindowMapManager, as they otherwise have to deal with their window size.

These clients would have to use a SlidingWindowMapBuffer to hide this fact.

This type will always use a maximum window size, and optimize certain methods to
accommodate this fact

	
MapRegionCls

	alias of smmap.util.MapRegion

	
MapRegionListCls

	alias of smmap.util.MapRegionList

	
MapWindowCls

	alias of smmap.util.MapWindow

	
WindowCursorCls

	alias of WindowCursor

	
collect()

	Collect all available free-to-collect mapped regions
:return: Amount of freed handles

	
force_map_handle_removal_win(base_path)

	ONLY AVAILABLE ON WINDOWS
On windows removing files is not allowed if anybody still has it opened.
If this process is ourselves, and if the whole process uses this memory
manager (as far as the parent framework is concerned) we can enforce
closing all memory maps whose path matches the given base path to
allow the respective operation after all.
The respective system must NOT access the closed memory regions anymore !
This really may only be used if you know that the items which keep
the cursors alive will not be using it anymore. They need to be recreated !
:return: Amount of closed handles

Note: does nothing on non-windows platforms

	
make_cursor(path_or_fd)

	
	Returns:

	a cursor pointing to the given path or file descriptor.
It can be used to map new regions of the file into memory

Note: if a file descriptor is given, it is assumed to be open and valid,
but may be closed afterwards. To refer to the same file, you may reuse
your existing file descriptor, but keep in mind that new windows can only
be mapped as long as it stays valid. This is why the using actual file paths
are preferred unless you plan to keep the file descriptor open.

Note: file descriptors are problematic as they are not necessarily unique, as two
different files opened and closed in succession might have the same file descriptor id.

Note: Using file descriptors directly is faster once new windows are mapped as it
prevents the file to be opened again just for the purpose of mapping it.

	
mapped_memory_size()

	
	Returns:

	amount of bytes currently mapped in total

	
max_file_handles()

	
	Returns:

	maximum amount of handles we may have opened

	
max_mapped_memory_size()

	
	Returns:

	maximum amount of memory we may allocate

	
num_file_handles()

	
	Returns:

	amount of file handles in use. Each mapped region uses one file handle

	
num_open_files()

	Amount of opened files in the system

	
window_size()

	
	Returns:

	size of each window when allocating new regions

	
class smmap.mman.SlidingWindowMapManager(window_size=-1, max_memory_size=0, max_open_handles=9223372036854775807)

	Maintains a list of ranges of mapped memory regions in one or more files and allows to easily
obtain additional regions assuring there is no overlap.
Once a certain memory limit is reached globally, or if there cannot be more open file handles
which result from each mmap call, the least recently used, and currently unused mapped regions
are unloaded automatically.

Note: currently not thread-safe !

	Note: in the current implementation, we will automatically unload windows if we either cannot

	create more memory maps (as the open file handles limit is hit) or if we have allocated more than
a safe amount of memory already, which would possibly cause memory allocations to fail as our address
space is full.

	
class smmap.mman.WindowCursor(manager=None, regions=None)

	Pointer into the mapped region of the memory manager, keeping the map
alive until it is destroyed and no other client uses it.

Cursors should not be created manually, but are instead returned by the SlidingWindowMapManager

Note:: The current implementation is suited for static and sliding window managers, but it also means
that it must be suited for the somewhat quite different sliding manager. It could be improved, but
I see no real need to do so.

	
assign(rhs)

	Assign rhs to this instance. This is required in order to get a real copy.
Alternatively, you can copy an existing instance using the copy module

	
buffer()

	Return a buffer object which allows access to our memory region from our offset
to the window size. Please note that it might be smaller than you requested when calling use_region()

Note: You can only obtain a buffer if this instance is_valid() !

Note: buffers should not be cached passed the duration of your access as it will
prevent resources from being freed even though they might not be accounted for anymore !

	
fd()

	
	Returns:

	file descriptor used to create the underlying mapping.

Note: it is not required to be valid anymore
:raise ValueError: if the mapping was not created by a file descriptor

	
file_size()

	
	Returns:

	size of the underlying file

	
includes_ofs(ofs)

	
	Returns:

	True if the given absolute offset is contained in the cursors
current region

Note: cursor must be valid for this to work

	
is_associated()

	
	Returns:

	True if we are associated with a specific file already

	
is_valid()

	
	Returns:

	True if we have a valid and usable region

	
map()

	
	Returns:

	the underlying raw memory map. Please not that the offset and size is likely to be different
to what you set as offset and size. Use it only if you are sure about the region it maps, which is the whole
file in case of StaticWindowMapManager

	
ofs_begin()

	
	Returns:

	offset to the first byte pointed to by our cursor

Note: only if is_valid() is True

	
ofs_end()

	
	Returns:

	offset to one past the last available byte

	
path()

	
	Returns:

	path of the underlying mapped file

	Raises:

	ValueError – if attached path is not a path

	
path_or_fd()

	
	Returns:

	path or file descriptor of the underlying mapped file

	
region()

	
	Returns:

	our mapped region, or None if nothing is mapped yet

	Raises:

	AssertionError – if we have no current region. This is only useful for debugging

	
size()

	
	Returns:

	amount of bytes we point to

	
unuse_region()

	Unuse the current region. Does nothing if we have no current region

Note: the cursor unuses the region automatically upon destruction. It is recommended
to un-use the region once you are done reading from it in persistent cursors as it
helps to free up resource more quickly

	
use_region(offset=0, size=0, flags=0)

	Assure we point to a window which allows access to the given offset into the file

	Parameters:

	
	offset – absolute offset in bytes into the file

	size – amount of bytes to map. If 0, all available bytes will be mapped

	flags – additional flags to be given to os.open in case a file handle is initially opened
for mapping. Has no effect if a region can actually be reused.

	Returns:

	this instance - it should be queried for whether it points to a valid memory region.
This is not the case if the mapping failed because we reached the end of the file

Note:: The size actually mapped may be smaller than the given size. If that is the case,
either the file has reached its end, or the map was created between two existing regions

Buffers

Module with a simple buffer implementation using the memory manager

	
class smmap.buf.SlidingWindowMapBuffer(cursor=None, offset=0, size=9223372036854775807, flags=0)

	A buffer like object which allows direct byte-wise object and slicing into
memory of a mapped file. The mapping is controlled by the provided cursor.

The buffer is relative, that is if you map an offset, index 0 will map to the
first byte at the offset you used during initialization or begin_access

Note: Although this type effectively hides the fact that there are mapped windows
underneath, it can unfortunately not be used in any non-pure python method which
needs a buffer or string

	
begin_access(cursor=None, offset=0, size=9223372036854775807, flags=0)

	Call this before the first use of this instance. The method was already
called by the constructor in case sufficient information was provided.

For more information no the parameters, see the __init__ method
:param path: if cursor is None the existing one will be used.
:return: True if the buffer can be used

	
cursor()

	
	Returns:

	the currently set cursor which provides access to the data

	
end_access()

	Call this method once you are done using the instance. It is automatically
called on destruction, and should be called just in time to allow system
resources to be freed.

Once you called end_access, you must call begin access before reusing this instance!

Utilities

Module containing a memory memory manager which provides a sliding window on a number of memory mapped files

	
smmap.util.align_to_mmap(num, round_up)

	Align the given integer number to the closest page offset, which usually is 4096 bytes.

	Parameters:

	round_up – if True, the next higher multiple of page size is used, otherwise
the lower page_size will be used (i.e. if True, 1 becomes 4096, otherwise it becomes 0)

	Returns:

	num rounded to closest page

	
smmap.util.is_64_bit()

	
	Returns:

	True if the system is 64 bit. Otherwise it can be assumed to be 32 bit

	
class smmap.util.MapWindow(offset, size)

	Utility type which is used to snap windows towards each other, and to adjust their size

	
align()

	Assures the previous window area is contained in the new one

	
extend_left_to(window, max_size)

	Adjust the offset to start where the given window on our left ends if possible,
but don’t make yourself larger than max_size.
The resize will assure that the new window still contains the old window area

	
extend_right_to(window, max_size)

	Adjust the size to make our window end where the right window begins, but don’t
get larger than max_size

	
classmethod from_region(region)

	
	Returns:

	new window from a region

	
ofs_end()

	

	
class smmap.util.MapRegion(path_or_fd, ofs, size, flags=0)

	Defines a mapped region of memory, aligned to pagesizes

Note: deallocates used region automatically on destruction

	
buffer()

	
	Returns:

	a buffer containing the memory

	
client_count()

	
	Returns:

	number of clients currently using this region

	
includes_ofs(ofs)

	
	Returns:

	True if the given offset can be read in our mapped region

	
increment_client_count(ofs=1)

	Adjust the usage count by the given positive or negative offset.
If usage count equals 0, we will auto-release our resources
:return: True if we released resources, False otherwise. In the latter case, we can still be used

	
map()

	
	Returns:

	a memory map containing the memory

	
ofs_begin()

	
	Returns:

	absolute byte offset to the first byte of the mapping

	
ofs_end()

	
	Returns:

	Absolute offset to one byte beyond the mapping into the file

	
release()

	Release all resources this instance might hold. Must only be called if there usage_count() is zero

	
size()

	
	Returns:

	total size of the mapped region in bytes

	
class smmap.util.MapRegionList(path_or_fd)

	List of MapRegion instances associating a path with a list of regions.

	
file_size()

	
	Returns:

	size of file we manager

	
path_or_fd()

	
	Returns:

	path or file descriptor we are attached to

Changelog

v6.0.0

	Dropped support 3.6 and 3.7

	Declared support for Python 3.11 and 3.12

v5.0.0

	Dropped support 3.5

	Added support for Python 3.10

v4.0.0

	Dropped support for Python 2.7 and 3.4

	Added support for Python 3.7, 3.8, and 3.9

	Removed unused exc.MemoryManagerError and exc.RegionCollectionError

v3.0.5

	Restored Python 2 support removed in v3.0.2

	Changed release signature key to 27C50E7F590947D7273A741E85194C08421980C9.
See https://keybase.io/byronbates for proof of ownership.

v3.0.4

	Signed release (with correct key this time)

v3.0.2

	Signed release

	Switched to GitHub Actions for CI

v3.0.1

	Switched back to the smmap package name on PyPI and fixed the smmap2 mirror package
(#44 [https://github.com/gitpython-developers/smmap/issues/44])

	Fixed setup.py long_description rendering
(#40 [https://github.com/gitpython-developers/smmap/pull/40])

v0.9.0

	Fixed issue with resources never being freed as mmaps were never closed.

	Client counting is now done manually, instead of relying on pyton’s reference count

v0.8.5

	Fixed Python 3.0-3.3 regression, which also causes smmap to become about 3 times slower depending on the code path. It’s related to this bug (http://bugs.python.org/issue15958), which was fixed in python 3.4

v0.8.4

	Fixed Python 3 performance regression

v0.8.3

	Cleaned up code and assured it works sufficiently well with python 3

v0.8.1

	A single bugfix

v0.8.0

	Initial Release

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 smmap	

 	
 	
 smmap.buf	

 	
 	
 smmap.mman	

 	
 	
 smmap.util	

Index

 A
 | B
 | C
 | E
 | F
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | W

A

 	
 	align() (smmap.util.MapWindow method)

 	
 	align_to_mmap() (in module smmap.util)

 	assign() (smmap.mman.WindowCursor method)

B

 	
 	begin_access() (smmap.buf.SlidingWindowMapBuffer method)

 	
 	buffer() (smmap.mman.WindowCursor method)

 	(smmap.util.MapRegion method)

C

 	
 	client_count() (smmap.util.MapRegion method)

 	
 	collect() (smmap.mman.StaticWindowMapManager method)

 	cursor() (smmap.buf.SlidingWindowMapBuffer method)

E

 	
 	end_access() (smmap.buf.SlidingWindowMapBuffer method)

 	
 	extend_left_to() (smmap.util.MapWindow method)

 	extend_right_to() (smmap.util.MapWindow method)

F

 	
 	fd() (smmap.mman.WindowCursor method)

 	file_size() (smmap.mman.WindowCursor method)

 	(smmap.util.MapRegionList method)

 	
 	force_map_handle_removal_win() (smmap.mman.StaticWindowMapManager method)

 	from_region() (smmap.util.MapWindow class method)

I

 	
 	includes_ofs() (smmap.mman.WindowCursor method)

 	(smmap.util.MapRegion method)

 	increment_client_count() (smmap.util.MapRegion method)

 	
 	is_64_bit() (in module smmap.util)

 	is_associated() (smmap.mman.WindowCursor method)

 	is_valid() (smmap.mman.WindowCursor method)

M

 	
 	make_cursor() (smmap.mman.StaticWindowMapManager method)

 	map() (smmap.mman.WindowCursor method)

 	(smmap.util.MapRegion method)

 	mapped_memory_size() (smmap.mman.StaticWindowMapManager method)

 	MapRegion (class in smmap.util)

 	MapRegionCls (smmap.mman.StaticWindowMapManager attribute)

 	
 	MapRegionList (class in smmap.util)

 	MapRegionListCls (smmap.mman.StaticWindowMapManager attribute)

 	MapWindow (class in smmap.util)

 	MapWindowCls (smmap.mman.StaticWindowMapManager attribute)

 	max_file_handles() (smmap.mman.StaticWindowMapManager method)

 	max_mapped_memory_size() (smmap.mman.StaticWindowMapManager method)

N

 	
 	num_file_handles() (smmap.mman.StaticWindowMapManager method)

 	
 	num_open_files() (smmap.mman.StaticWindowMapManager method)

O

 	
 	ofs_begin() (smmap.mman.WindowCursor method)

 	(smmap.util.MapRegion method)

 	
 	ofs_end() (smmap.mman.WindowCursor method)

 	(smmap.util.MapRegion method)

 	(smmap.util.MapWindow method)

P

 	
 	path() (smmap.mman.WindowCursor method)

 	
 	path_or_fd() (smmap.mman.WindowCursor method)

 	(smmap.util.MapRegionList method)

R

 	
 	region() (smmap.mman.WindowCursor method)

 	
 	release() (smmap.util.MapRegion method)

S

 	
 	size() (smmap.mman.WindowCursor method)

 	(smmap.util.MapRegion method)

 	SlidingWindowMapBuffer (class in smmap.buf)

 	SlidingWindowMapManager (class in smmap.mman)

 	
 	smmap.buf (module)

 	smmap.mman (module)

 	smmap.util (module)

 	StaticWindowMapManager (class in smmap.mman)

U

 	
 	unuse_region() (smmap.mman.WindowCursor method)

 	
 	use_region() (smmap.mman.WindowCursor method)

W

 	
 	window_size() (smmap.mman.StaticWindowMapManager method)

 	
 	WindowCursor (class in smmap.mman)

 	WindowCursorCls (smmap.mman.StaticWindowMapManager attribute)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to smmap’s documentation!

 		
 Motivation

 		
 Overview

 		
 Prerequisites

 		
 Limitations

 		
 Installing smmap

 		
 Homepage and Links

 		
 License Information

 		
 Usage Guide

 		
 Design

 		
 Memory Managers

 		
 Cursors

 		
 Buffers

 		
 Disadvantages

 		
 API Reference

 		
 Mapped Memory Managers

 		
 Buffers

 		
 Utilities

 		
 Changelog

 		
 v6.0.0

 		
 v5.0.0

 		
 v4.0.0

 		
 v3.0.5

 		
 v3.0.4

 		
 v3.0.2

 		
 v3.0.1

 		
 v0.9.0

 		
 v0.8.5

 		
 v0.8.4

 		
 v0.8.3

 		
 v0.8.1

 		
 v0.8.0

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

